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A Dorivation of the Sample Multiple Correlation Formula

for Raw Scores '

Francis J. O'Brien, Jr.; Ph.D.

Nat,ional Opinion Research Center, New York

Introduction

This paper is the fourth in a series, of publications. The purpose

of these papers is to provide supplementary reading for students of

applied statistics. (See O'Brien; 1982a; 1982b; 1982c). My intended

audience is social science graduate and advanced undergraduate students

familiar with applied statistica The minimum background for most of

the existing and forthcoming papers is knowledge or applied statistics throul

rudimentary analysis.of variance; and multiple correlation and regression

analYSiS.

The unique feature of this set of papers is detailed proofs and

derivations of imnortant formulas and derivations Which are not readily

available in textbooks, journal articles, and other similar sources.

Each proof or derivation is presented in a clear; detailed and consistent

fashion. When necessary, a review of.relevant algebra is provided.

Calculus is not used or assumed.

As a former instructor of applied statistics on the graduate

level, I know that many students are very capable of understanding the

proofs and deriliations preSented in these paperS My experience has been

that many students desire to see a full, comprehensible statement of

a mathematical argument. This series seeks to address such needs.

The present paper is a companion work to an earlier paper (O'Brien,

1982c). Each is a derivation of the multiple correlation formula for

the linear model. The first paper formulated a detailed derivation of the
1

multiple correlation formula for standard (z) scores. The present paper

is a derivation of the multiple correlation formula for unstandardized

(raw) scores. Readers should find each paper interesting and informative.

1-
TYpographical errors appeared in this paper For the readers

convenience, corrections are summarized in Appendix B of the present paper.
The author would be grateful if other errors in that paper or the
present paper were communicated to him.



The two paperS taken together are meant to be preparatory reading

for a related paper.
1

Overview of Derivation

In this paper we will present a derivation of the linear multiple

correlation fortuld for raw scores. The basic objective is to derive

this formula for one raw score criterion (dependent variable) and

lany finite number of raw score predictors (independent variables);

Let us first state the formula we will derive and introduce the

notation used The linear Multiple correlation between one criterion

and p predictors can be expressed as:

RY .

1
,x ,...,x,,...,x

P
= hit Sy S1 + g +

v 2

br-,S S + ...+ b r S S
J YJ y P YP y p

TJriting the right hand side in summation notation:

RY.X x 2,".,.X X E '13.r :S S
1 J YJ Y

-where:

Y

Y.A ix x- x = multiple correlation of raw scores,

the observed raw score criterion to be predicted;

xl,x2,...,xj,...,xp raw score predictors of the criterion,

1

Forthcoming with the expected title: "A Derivation of the Unbiased
Sample Standard Error of Estimate: the General Case." It will appear in ERIC.



3.

b'ill ...,b ,... b _-- slope coefficients o regression weight-Si
1 2 I P

r ,r r = prOdUct moment cri:erionifiredie.:or correlationS,
1

vi,..., vp

S
I

;S-,0....S
j

...,S
P

,-- standard deviations of the predictors`,

S the standard deviation of the criterion.
y

ThiS IS the formula that is derived in this paper: We will

first present a deriVation for the simplest multivariate case: one criterion

and two predictors. A derivation is then presented for three predictors

The latter derivation is a useful exercise because it allows a review

of the logic and procedures used in the derivation. In addition, it

will motivate the use of summation when the algebra becomes complex.

The deriVation is then presented for the general case of 0 (finite)

predictors. An integral part of this paper is' Appendix'A. In that

appendix, a method is presented for finding the "normal equations" in

regression analysis for raw score linear models.

Prior to starting the derivation for two predictors, let us

outline the plan which will be followed in the derivations. The steps we

will use are:

1. State the regression model

2. derive the normal. equations (see Appendix A)

T. define the multiple correlation

4. apply rules of covariance and variance algebra
to simplify the definitional form of the multiple
correlation formula

5. substitute the normal equations into the multiple
-correlation formula

6. simplify.

We will refine these steps to suit a particular application:



4.

Brief Overview of Regression Analysis and

Derivation for Two Prediccor5

In this section we will review the baSic concepts, logic and

our notation for regression analysis. Introductory applied statistics

textbooks can he consulted for more detailed information on regression

analysis theory. See, for example, Lindeman , et_al., 1982. The intention

in this section is to review the rationale of regression analysis;

The primary use of statistical regression analysis is controlled

prediction and explanation of. quantatativedata. The basic principle

that-lay behind regression analysis involves aelecting a general

mathematical functicn that beSt matches the underlying form of

variables over which one desires to exercise p ictability. Assume one i5 attempting

to predict
one raw Score criterion by use OT two raw score predictorS.

Assume further that the relationship between each predictor and the

Criterion is linear in form The mathematical function most

often selected to obtain the best linear "fit" for these conditions is

provided by the following equation:

Y

where:

Y

+ 6-X. + x
2

= the predicted (not actual or observed) criterion,

a, ) , b2 = constants_to be selected by the "least.squares"; procedure;

a = the Slope intercept, and b- and b. = slope coefficient

ter-MS,
1

predictor variables in deviation score form.

1U



5.

ft is conventional to express the predictor variables in deviation Score

tom. That is, for each predictor, first find its mean and then subtract

the mean from each predictor. For example,

X-
1

Here, for either variable, 'cap X" is the actual (or gross) raw score'and

is its'arithmetic mean. It is not necessary for any mathematical

reason to re-express the predictors in deviation score fOrM. ThiS is dohe

simply to fOreethe algebra to be more tractable. As such, it is a matter

1
of convenience, Note that we do not re-express Y (or Y) as deviations: We could

re-express each type of criterion. However, we have chosen not to

do this since most authors follow this convention.

Using deviation scores for the predictors, we can now write

the two predictor raw score model as follows:

a + b (X

=a 1-bx 1):
1 1

As stated, we Will use the second form in this paper.

The regression model stated above is an idealized mathematical model.

If a variable set consisting of one criterion and two predictors can be

assumed to be linear, then the model is a reasonable one to apply

for prediction of actual or observed criterion scores. It is idealized

in the sense that it assumes no error is made in the prediction of Y. In

practice, when an actual criterion score is compared to the criterion

1-Readers of the 1982c paper may wonder why on page 2 there6f the

raTscore regression model was stated in terms of gross raw score (and

not deviation score) predictors; As stated, it is not_necessary math-

ematically to re-express; In any case, the major result_we are seeking in

this paper is unaffected by the initial form of the predictors. The

derivation could be made witnout the translation of predictors into

deviation score form, but the result ould involve unnecessary and unwanted

complexities. Practically speaking, t .ispaper would have been very much

longer if re-expression was not done



6.

score generated by model, some error is likely to occur--the "fit" is

lesJ than perfect. If we call the actual sample raw score criterion Y,

we can sLate another model (an observed raw score model):

Y = Y + e

where:

e the amount of numerical error -resulting from using the
idealized mathematical model (Y) to predict the actual
criterion score (Y).

That is, an actual criterion consists of a predicted quantity plus an

error component.

The error made in predicting the observed criterion Store by the

idealiZed mathematical model is:

A
e = Y - Y

This is the quantity we want to be as small as possible in order to

minimize the error in prediction. It can be seen that,if e=0;the
"N_

Ictual criterion is perfectly predicted by,the idealized model (Y=Y).

The technique most Often used in the social sciences to accomplish

this goal is the "least squares" procedure. Essentially, this procedure

seeks to maximize predictability by minimizing prediction error. The.least

squares criterion or goal is summarized in the folloW'ing eXpression:
1

r's

Y Y

1=1

_7
e = a minimum

A

If we substitute the quantity for Y previously defined, we can rewrite the

leaSt squares criterion as:

If it is understood that the summation limits range from the first

observation (i=1) to the laSt (i=n) then we can drop the Summation limitsc
n refers to the total number'of observations for the zriterionand predictors.
This sample size is the same regardless of the number of predic.tors in the

regression model._ mLater in the paper when the algebra becomes more complex,

we use summation limitS extensively.



(a + b x
1 1

7.

b X ) ,=ie
2

minimum

(As an aside, "least squares" means we deter-Mine values for d,b
1

and b

^
in Y such that the squared error term reSultS in the least-poSSible value

Normal Equations

Having stated the multiple regression model for two predictors,

We now derive the So-called "normal equations ". A discussion of the pro-

cedures and results we will need is presented in Appendix A. The reader

may wish to read Appendix A at this 'point (or take the next step

on taith).

The normal equations are derived from the least squares criterion

using calculus. The basic idea that lay behind the technique for

two predictors is to generate an equation for each of the constants in

the regression model (a,bt and b,i). For the two predictor model; the normal

equations for a, b
1

and b-,;, respectively are found to be:

na
12.xl

Y
+

x9Y

In the first normal equation (for a), n is the sample size:

TheS6 normal equatiOns can be simplified by substituting various

descriptive statistics into terms of the equations. Other terms will

cancel in the process. For the readers convenience in following the

substitutions; some basic formulas for sample descriptive statistic:;

presented in Table 1.



'Table I

Descriptive Sample Statistics

Statistic

Mean

Variance

Standard Deviation

Raw Score Form Deviation Score Form

X1

9

1

Correlation of
r =

(Xii) (Y-7

Y and
x

Y1
l (n-1)S S

1 2

(n-I)S-S-
2'

same

n-1

)( y

(where y = Y-Y)

(n-1)S.S
1 2

fi

Note: For "moan" it is understood that the summation extends across all n values of X,
(and Y'

for "correlation"). This applies equally to other statistics defined in the table.

15
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1. In the first normal equation, we recognize that, on the right hand side:

x1- ) =

In the second normal equation, we can see that:

0

E(x

z

1
)2

J

but the sample variance

or (n-1)S1

This may be substituted for x

S2

I

is:

As for Ex
1

,x we can use the definition of the sample correlation

between x and x
7

to Simplify thiS term. By definition, for samples:

y.(xA)(x-a2) x
or:

(n-1)S1S-7 (n-1)S S

(n=1)r12S Ex x . Thia may be substituted.



I Finally, Ty may be simplified as followS:

Y = y(x x) . Now,

is identical to' `'1) (Y -Y) or

(where y = Y-Y) This is recognized to be the

numerator of the correlation between

x Y
r =

(n-1)S S
1 9

and Y (ryl or r
ly

). Hence,

or xiY = (n-1 ) r
y 1

SYS
1

. This

may be substituted into the second normal equation.

1

PROOF:

(X Y
=

1E:( -)(1)Y /.

Now, E(X1-7 )(Y-V)

Therefore,

xV +
1

TclY )

sfiY +X Y

n7) -1-4. TC17 = X -= yX1 - Y(nX
1
)

=5q)Y = 2:(X ) (Y=T)

=
n3"-ci

End of proof.
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3. For the:equation
2
Y we can write down immediately the following

Simplifications:

x-Y
translates into -E. *2y = (n-1)r S -S- . In addition,

) y2 y"2-

5Ex9-
= 0

lx; = (n-1 )r
12

S
i -

2
= (n=1)S7

Making all these substitutions, we arrive at a Simplified set of the originally

.Stated normal equations.

na b
1

(0)

(n-l)r S S

1

y v 1 a(0) + b (n-1)S
1

(n =1
y2 y'.2

-= a(0)

b9(0)

b2 (n -1

b
2
(n=1)S2-

2 _

TO further simplify; eliminate zero terms, and for the last two. normal

equations, divide each term by (n-1). This gives us:

EY

r S
yi y

r
y2 y

na

S _;.

1

2

-9
s'T

1 1

b r
1 12

b r
2 12

-2
h
2
S
2
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As a -final simplification, we can divide through the first equation by n:

r S S = I 1

YI Y 1

b

r S S b r S S
y2 y 2 1 19 1 2

b r S
2 I 2

TheFe are the normal equations we want to work with in the derivation

for two predictors; For the readers convenience in working through the

derivation, we will restate them prior to the derivation.

Multiple Correlation

We are now ready to define the multiple correlation for one criterion

and two predictors. By definition:
1

where:

RY.x corr(Y,Y) = corr(Y,a + b-x- + b-x-)x2
1 1 2 2

cov(Y,Y)

\ivar(Y) var()

cov(Y,a + x +bx
1 1 2 2

var (Y) var (a + b xi + b2x2)

corr means correlation
cov means covariance and,
var means variance.

1

Alternative notation systems use Or
y.x +x

I
x2

IL)

among others.
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Itisimportanttorememberthata,b-1 andb-function as constants.

Elementary covariance and variance operations performed on the

ahove correlation formula yield in the first step:

cov(Y,a) + cov(Y,b1x1) + cov(Y, x )

dvar(Y)
var(a) + Var(b X

1
) + var(b

2
;x

2
) +

2cov(a,bix ) + 2cov(a,b2x7) 2cov(bixi,b2x9)

Applying rules of covariance and variance for variables and constants;

we can achieve further simOlification.
1

This is done on the next page.

1
To briefly review: the variance of any constant is zero; the

variance of a product term containing a constant yields the squared
constant times the variance of the variablesfor example

var(b
1
x

1
) = b1

1

When a covariance term contains constants, factor the constants outside
the covariance operator (sometimes this reduces the covariance to zero)-
for example,

but

cov(a
'

b
1 1
x-) = ab cov(I,x

1

) = 0

' 2
cov(b-1 x1- -x

2
) = cov(x ,x

2
)

definition the covariance is related to the simple correlationfor example,

cov(xi;x2)
r12S1S2

This should appear correct since, by definition)

cOV(k ,k )
2

r12

1

var(x
1
) var(x

?

20
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14.

04-b1

cov(Ifx)+b2
2

cov(Y;x-)

\II

0 + bvar(x
1
) + b2var(x

2
) +

1

0 4- 0 4- 2bib2cov(xi,x)

As mentioned, by definition:

cov(Y;x ) =rSS
YI Y

cov(Y,x,) r
y2

S
V
S
2

cov(x ix = r S1

9 12 1°2

One further obr-erVation should be made with respect to the variance

of the predictors. For example; the variance of x
1

is:

var(x1 ) = var(X1 - 5Z
1
)

definitiOn, the variance of this difference is:

var(X1) + var(R ) - 2cov(Xt:RI)

Since X
1

is a constant,

var = var(X1) + 0 0

= Si
2

Similar results obtain for var(x
2
). Therefore

)
when all substitutions are

made:

Ry5x
x2

br SS + r-S
yl y 1 2 y2 y

S
2

NI
y

b12 S1 2 + b22S2 + 2bbr SS
1 2 12 2

This is the form of the multiple R we will use in the derivation. It will

be restated for the reader convenience.

2i
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Diarivation

The following formula for one criterion and two predictors

appears in many applied statistics textbooks:

Ry.x
1

,x

b
1
r
yl

S S
1

+ hr_SS
2 y2 y 2y

S.

We are now able to show its derivation.

For the readers
t

cDnvenience, a restatement of the simplified

set of normal equations and the multiple R formula is given in Table 2.

The derivation involves two steps: a)substitute the normal equations

into the numerator of the multiple R formula and b)simplify algebraically.

See the page following Table



Table 2

Normal EquatLony,---and_flulttple Correlation Formula for Two Raw Score Predietbr-g-
7

No-tmai-Ettuations
1

2
r S S = h

1

S + b r
12

S
1

S

yl y 1 1 2

r S- S = h
1

r
12

S
1

S
2

+ b-S
y2 y 2 2 2

Multiple Cornelia-Lo

RY.x ,

1

x
2

hr SS brSS
yl y 1 )12 y 2

sy
; 2
b S +

1 1

+ 2b1h2r12SIS2

1--
a

term is omitted
because it plays no role in the derivation (other than zero),

The = Y

NOTE: Proof involves the substitution of the normal equation into the numerator of

the multiple R formula and simplifying. See text for details.

I
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Notice that the numeratDr of the multiple R formula contains

These terms are functionally related

substitute normal equations for

the terms r S s- and r S
y2 Yvl y 1

to the normal equations. If we

each term into R and rearrange terms, we obtain the following reSultS:

(Hence,

9
+ b

9
r S + b9 S9

y 112-

9 7_ 9
b-S-7 + 17-2-S + 2b b r

1 1

9 ')
r

1

9 9+bbrSS + b-S-
12 1 2 2 2

S`
oi2 S") + 2b r S S

2 9 1

S , 2 2

2 2- 2
+ b2 S2 + 2b

1
b
2
r
12

S
1
S
2

-2-2
+ + 2b b2 r12S1S2

b r_ S S + b2r
2
S S

2Y Y y y

2-2
+ 1pS2 + 2b

Now, the bracketed term of the denominator can be simplified algebraically if

we remember radicals and laws of exponents'.
1

1--Let the denominator (inside the brackets) be called A. Thus, the
structure of the Multiple R

R

A

S \jr.k

kecall the following permissible operation (rationalizing the denominator):



Simplifying:

Therefore,

RY'xi'x2

18.

2 2 9
b`1 S

1

+ b2S7 + 2b
1 2

r
12

S
1
S

S
y

br S_S +br SS
1 yl y 1 2 y2 y 2

END OF PROOF1

1 For readers familiar with the 1982c paper, it is possible to

Obtain a "theap" proof in the analogous standard score regression model:. If variables

are in standard score form, then the standard deviations become unity;

S = S

the 1982c paper

R-z .z,z
Y 2

1. Thus, in the notation of

y2



Derivation for Three Predictors

Let us ;now workout the derivation for a three predictor

raw score linear regression model; This will allow us to review

the logic and procedures of the derivation. We will also introduce

the ti,;(-2 of summation which becomes necessary for the general case of

p predictors.

The first step is to state the regression model. For

Y = a + b1x1 + b7x7 + b
3
k
3

e.'

19.

three predictors:

We have simply added an independent variable to our prediction (idealized)

mathematical model to forM A foUr dimensional ilodel (Y. and three

pred:i.ctors with their associated slope terms0).

As in the two predictor model, we make use of the least squares

criterion to establish our g'oaI of minimizing the prediction error:

0

Y)- - b x
1 1

b x- = Le2 = a minimum

The next step is the application of partial differentiation to find

derivatives of each of the terms in the prediction model (a,b1;b2 and b

This procedure produces the set of normal equations. Appendix A shows

the procedures involved. Omitting the cumbersome algebra in<7olved

in Simplifying the original set of normal equations, we can state the

final and simplified set of normal equations as follows:



r 5.s.
yl y 1

rSS brS
y2 y 2 1 1

S
2

+b S
2 2 1

S
2

r _S b
1

r
1

S
3

+ rS
Y 3

2 23 2
S
3

--+,

+ b3r23S2S1

Recall that the value of a is determined in practice but it plays no role in the

derivation Since it "drops out" in covariance and variance operations of the multiple

R derivation. 4

The above normal equations are the ones we will make use of in the derivation

of the multiple R formula for three predictors. A restatement of them is presented

in Table 3 for easy reference;

The third step is to define the multiple correlation of one crit on

and three ray./ score predictors; Rules of covariance and variance algebra will allow

us to simplify the definitional form of R.

The multiple R is defined on the followin'g page.
1

_

The term a is omitted . For justification; the reader ti), w;int to include it i.n

the definition of R and a3certain the result,



R
Y.x

1

,x
3,

= corr(YiY ) corr(Y b1 x
1

+b
2 2

+
3 3

) cov(Y;Y)

All of the above

to operations

RY.x-
1

This is

easy

A

var(Y) var(Y)

forms state equivalent ways to define the multiple R. The last is amenable

of covariance and variance, Applying rules of covariance and variance algebra:

Cov(Y,b xi) + cov(Y,b2x2) + cov(Y,b3x3)

var (b x ) + var(b x ) + var(b
3

x3) +

cov(h x x2) + 2cov h X ) + 2cov

33

= hr SS- + r -S S + b r SS
y j 1 2 y2 y 2

2

3

+2b
1 3

r
13

S1 S
3

+ 2b2 b3 r
23

S2 S

as far as we can simplify the multiple R at this point. We will retain this for

reference; See Table 3.

ti



Table 3

Nor-Mal.--1:ytaLi-on,s -and Multiple Correlation Formula for Three RawScore- Pred-ict-orS

Normal Equations'

r

Y

-S

Y

S-

r
y2

S2 = b-r12S1S2

r S = b r
y y 1 13

Multiple Correlation

+ br
12
SS

2
b3 r

13
SS

br S
3 23 2

S
3

b
2
r

9
S
2
S3 +

brSS + -r -S + rSS
1 _04_4_ 242_ 3-0 3

22

2
+

b

2
+

23

3

_2
+

1

b2

2

2b b2r 4S1S2 + 2b}b3r1 + 2b
2 3

r
2 3

S
2
S
3

1

Again) we note that the term a (=Y) is omitted from normal equations and the multiple R.

NOTE: perivation involves substituting the normal equations into the multiple R and simplifying. See

the text for details.



We have stated the multiple regression model and least squares criterion; and presented

the normal equations and the multiple R fbrMula. The faUrth step is to §tibtitute

the normal equations into the multiple R.

If we !=substitute each of the normal equations for appropriate term tlie-fturriglato>/ r

/
of R we obtain (see Table 3):

Now

cov(YiY) = b-r -S S- + h-rSS- hrS S-
1 Y I

2 y 2 y 2 3 y 3 Y 3

9 9

(b'S'
1

+h
1

S
2

r
12 1

3 13 1 3

r S S ) +
rlS

+b2'p-r S S )

b
1

b (1) b ijS-S + b bjr jS2S + bjS-
3

)3 113 223
r13S1S3) + b

2
r
12

S
1

S2 + b2
2 2

r
23
-S S

(bi jr jSiSj jr2j
3

)

let us write each parenthesised term on a separate line

./

cov(Y;Y) =
2 2

1)i s1

2

r
12

S
1

+

h ) r S
1

+

b b r
1 2 12'1 2

9-9

2'2

to form a covariance matrix:

2-
+ b S

2

33

r S

2

S3

1.1

23.



At this point we will introduce SUMM8tiO0 to simplify the algebra: Consider the three

squared terms along the northwest to southeast diagonal of the covariance matrix. It is clear

that we might express these terms in summation as follows:

3

J

j=1

2 2
bS

2 +b2 S
1 1 2 2

The remaining six terms in the matrix consist of three Rain of quantitie:

2b b r S S 2b r S

1 2 12 2 1 3 13 1

One common way to express this in summation is as follows:'

1

+b

3

2E 2:1),b.r-..
j

One of several :orms often seen in multivariate statistics textbooks is as

2 2 b.j b-r.

i(j
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The total number of terms to be summed is determined by multiplying

the upper limits (3x2=6). In the double summation operation, the inside

summation operator is set to I; then-increment the outer operator

(jr=2,3) giving i j=12 + 13. Now increment i to 2 and complete the limits of j

(with the side condition that i j e.g., i j=22 is not permitted);

The subscripts that result from all of the summation operations are:

12 + 13 + 23. Each value ,of course, is taken twice.



Thus, the nine covariance terms of the multiple R numerator can he written in all of

the following ways:

coy Y,Y) = b21 S + bY
2

-2-

1 2

1
2 2

j=i J

+ 2b r S 5
2

+ 2b r
3
S

1

S
3

+ 2b r 3S S3

b b.r..S.S.
j 1] j

brS5 +brSS + b r S S
1 y y 1 2 y2 y 2 3 y3 y 3

b.r .S S.
J Y J

This last equation is simply a restatement of multiple R numerator from Table 3. The second

equation was just derived from the first equation.

Turning to the denominator of the multiple R in Table 3, it is readily apparent that

it is similar to the covariance term above. That is

26.

I.22 2 2 2 2
S bS+bS+ b-S + 2bbr-SS+ 2bbrSS + 2bbrSSS,

1 1 2 2 3 3 1 12 1 2 1 1 3 2 3 23 2 3

vr-
b
2 2

S. S.

+

j=1

-3--2-

2 bar -S S.
b j ij y j

j=2 1=1

3 dI-



If we now form the ratio of covariance and variance terms for the multiple R, we

can complete the derivation for three predctors:

,x
2,x3

-P°

y7
-b
2 2 El

i=1 J J72 i71 1 j ij j

y

111.110,=1.1mmEMMINE

3

2

j=1 3 j

3 2

b r S.

J =2i= j ij I J

Notice that the numerator, and denominator (under the radical) are identical in for. If we

make the same algebraic simplification we made for the two predictor derivation, we obtain:'

RY.x ,x
2
,x

3
=

Jj=1 J J

2
b b,r.

j= i=1 J I

3

.S S:

J YJ. Y J END OF PROOF

This completes the derivation for three predictors. We now derive the multiple R for any

possible (finite) number of predictors in the linear regression model; 34
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Derivation for p Predictors

The derivation of the multiple correlation formula for any number

of predictors will be presented/as a generalization of the two and three

predictor cases. A rigorous mathematical proof that the generalization

holds for p predictors could be provided by "mathematical induction". Our

Approach in thiS section is a straightforward multivariate generalization.

For reference; the following is a listing of the general

steps for the p predictor variable case:

1. state the regression model for p predictors

2. derive the normal equations (see Appen,lix A)

3. define the multiple R

4. substitute normal= equations into numerator of R

5. express the covariance term in summation

6. express the variance term in summation

7. Simplify

The linear regression model is

A
Y = a + blk1 b

2
x
2
+ ...+ b.x. + ...+ b x

3 J P P

The least squares criterion is:

^ 9 i.= 2
1(Y = Y)- Le = a minimum

Sbstituting for Y:

1( 1x1 box b-x-)-= e2 = a minimum
J J P P

Next We derive the normal equations. In unsimplified form we have:
1

1nit8thatthenormalequationsfortermsxY y_,x
2
Y etc. are written

1

such that the first subscript is atwayc less that the-second one Since these

products are symmetric (Y.x
1
Y Yx1 etc.) this method simplifies the algebra. See

Appendix A for more detail.



Ex Y
1

=

=

Ex
2
Y

.

=

Ex3Y =

Ex =

1

na + hl Exl
2 )c2 3

Ex
3

-f-...+ b. x, +...+ b Ex
J J P P

2
+ Ex b.

2
Ex

1

x
21 1 3

Ex
1

x
3

+...+ b Ex
1 j
x. +...+ b

p i

Ex,x
j p

2
a Ex

2
+ Ex x +

1 1 2 2 2
Ex + b

3
Ex

2

x
3 j

+...+ b. Ex
2 j
x, +...+ b

p
Ex

2

x
p

a Ex3 b1 Ex x
3

+ b2 Ex2x3 b3Ex3+...+b,Ex x. +...+ b Ex x
J J P 3 P

a Ex Ex x + Ex x Ex x +...+ b Exx +...+ b Ex
1 p 2 3 3 p P P P

It we apply the same logic and make the same substitutions we made for 2 and 3 predictors, we

obtain a simplified set of normal equations!

Y

r S S = b S2 +brS
yl y 1 11 2 12 1

2
h-r- + S-

2Y Y 1 1 9

rY3SYS3 b r

a

+bt SS +...+ hr SS, +.1..+br
3 13 1 3 j lj 1 j P

+ b3r3

3 + b2r23S2S3 + b3S

P

h-r . -S +...+
3 j 2) 2 j 1p 2p 2 p

+...+ b,r ;S -S; +...+ b r
a3J3J p3p3p

r S S = brSS+br S 1S + b
3
r
3p

S S +...+ b S
YP P 1 1p 1 p P P JP j P P P

2

restatement of the normal equations is given in Table



e tOrre-Tat ion- fOrl lc tO-rs--an-dDeri-vatiori

We are no ready to derive the multiple correlation formula for p:predictors. See Table 4

for a statement of the definition the multiple R.

The covariance term is
1

cov(Y,a +bk
1

+b2 k
2

I J

bk b,x, +...+bk )
P P

br SS +br SS + b-r-SS b.r_.S S. +...+br_SS
1 Y1 Y 1 2 Y2 9 2 3 Y3 Y J YJ Y 3 P YP Y

Now, substitute the normal equations (line for line--see Table 4)

tN

cov(Y,Y) = b (b,S'T SS 4--..,--1-- ? S S) + b (b r S S -I-. ..+ r ' ...+
1 i 1 2 1 2 1 2 p 1p 1 p 2\ 1 12 p 2p p

-2

b (b-r SS + b- r` y ---i--...-1-- b S2)
P I IP I I) P,-P PP

Multiply each of the b, terms inside the parentheses and write each parenthesiied sum on a separate line:

A

cov(Y,Y) = r

v

-S

yS1

+ b2r
v2

S

y
S

2

b-r ,

Y3 Y

+;;.+ b_ r_ __S _S__

PYPYP

2
b

1

2

1

+1)22

22

12 1S

+ blb3r
13

S

1

bbrS
2 3

22
hbr SS. rSS+

1 3 13 1

S.

2 3 23 2 3 33

b h r bb r- SS + hr SS
n ip

sp
2 p 20 2 p 3 3p 3 p

,..+hbr SI S
1 p 1p p

+...+ b b,r S S,
2 2j 2

+...+ b-r
3p 3 p

r

P JP

S

I

S

p

For reasons presented earlier; the term a is omitted in the derivation.

37
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Table 4

Normal. Co-rtelationFormula Pte44ctd-rs

Nortif-1--ktiat fori-S I

rSS.b S.
yly1 11

rSS .brS
y 2 1 12 1

ry3 Sy S

3

=b1 r13 S

r S S
YP Y P

Mg-tiple COtteLat

+ b r
2 12

+ b S2

2 2

2232

b3r13S1S .,;+ bjrijS1SJ +...+ bripS/Sp

4 b3r3S2S3 ...+ bir2iSiSi +...+ bpr-4S2Sp

2

+...+ b r S S, +...+ b r

j 3J 3 J P 3P 3 P

r- + b-r + b-r -S +;;;+ S:S +...+ b 52

1 10p 2 20 2p3 3p 3 p jjp jp pp

RY.x x
2

,x ,...,x
j

= corr(Y;Y)

= cov(Y,Y)

A

I v a r 69 var(Y)

b

1

r S

= y

31.

corr (Y; b x + b- + +,..+bix +.;A b x )
1 1 22 s3 j j pp

coV(Yib Xi + + b3X3

var(Y), var(b
1

x
1

+ x +...+b,x, ...+b x )

...+b,r .5 S +...+b r S S

J PP

SY
2

b

2

2b

P P
2

r

121

2b,b,r,. S +. :.+ 2b b S

j ij i j p -1 p p -11P P- P

+ 2b
3

r
13

S

1

S

3

...+

1

The PY term is °Mitt-0 from the normal equations and multiple R;

NOTE: Derivation consists of substituting each r ,S S, notMal equation term into the

YJ Y J

covariance term of the multiple R. See text for details; 40
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To facilitate workihg with such a complex matrix, we will intro-

duce summation at this point; As the first step, we count the

total number of terms to be summed. Ah inspection of the covariance matrix (page 30)

above makes it evident that each row consists of p terms. Since there

is a total of p such rows, the entire covariance matrix consists of

p x p = p2 terms. For example, in the derivation for three

predictors, we worked with three rows; each of which contained three
_ _ 9

terms or a total of 3 x 3 =3-=9 terms. In the p predictor model,

the covariance matrix consists of two kinds of terms: diagonal
2 2 2

terms (h to b S- ) and off diagonal terms. It is evident that
1 1 P P

there are p such diagonal teLms. A little algebra will tell us

how many off diagonal terms are in the covariance matrix. Let X

represent the total number of off diagonal terms. Then:

7
TOTAL M A T R I X = p = p + X

or

X = p
-2

-p

X = 0(0-1)

Thus, the entire covariance matrix consists of p diagonal terms and p(p-1)

off y diagonal terms for a total of p
2

terms.

We can View the structure of the covariance matrix in another way.

This view is the "trick" in understanding the expression of the matrix

in summation notation. Notice that the off diagonal terms exhibit

a pattern (as we saw in the two and three predictor cases). Each

b.b
j
r
ij
.S

i
S
j

corresponds to one other term in the matrix that is identical
1

to i t ; For example, the first off diagonal term in row one is b S S

and the first term in row two is identical to it. In general,

any off diagonal term in row i;column j is .identical to the term

in row j, tOlUffin i (e.g., row 2, column 5 = tot 5, column 2). Thus;

the of diagonal terms consist of a number of identical pairs of terms.

There are p(p-1) such pairs of off diagonal termS. Suppose we

halve the total p
2
matrix and consider the upper half only that makes

a right triangle. In this halved matrix; we are considering
2

the p
3

diagonal terms and p(p-1)/2 off diagonal teams . That is; the upper

triangle consists of p(p71) terms. To represent the entire covariance

41



33.

2
mattix (0 terms), simply double the number of off diagonal terms

in the half matrix: p = p + 2 0(0=1) = p + p(p-1) total terms.

[
2

Examine the matrix of covariance terms for the three predictor case

for further clarification;
A

As explained, the cov(Y,Y) matrix consists of p x p =p2 terms;
9 9

there are p ID'S' and p(p-1)b.b r S S. or 2fP(p-1)/1 terms in
J ij

the total matrix;

Expressing the total number of diagonal terms in summation notation:

9 2

2'9

9 2 2 2
...+ b.S. +...+ b s =

J J P P

P n

j=1 J

1

The off diagonal terms can be expressed in Summation notation as follows:

P

r S.S ) = 2E EbbrSS
1 2 12 3 JP J P j=2 i=i J ij j

1Fbr those reader_; familiar with combinatoric -; the following may assist
in clarifying the logic.

There is a t_ctal of p b.2 S
2

which are combined with all such terms

at a time. In combinatorial notation, this means that p b,2 S
2

terms are com-

bine-1 one at a time =that is:
J

total number of
1,4S? terms C )

P! p(p -1)(p -2);;;1 _

11(p-1)! l(p-1)(p-2)...1

For the off diagonal terms, we construct 2-( terms (pairs

p

of identical terms, each combined with all other like terms two at a timP).

Thus:

Total number Of
bb,r:,S,S; term8

11 I 2 (: ;) P-
2!(p-2)!

Verne, tl-,e entire covariance matrix consists of:

4; 2 =

4.m

P(p=l)(P=2) (13-3) 1

P(P-1)
2 (p-2) (p-3) 1

P P(P-1) = P
2

terms

d9



For example, in the three predictet model, the first off diagonal

34.

term was seen to be
'

b-b-r--12 S-S-
2

and the last was seen to be b2bjrjS_;
1 2

In-the case of a 10 predictor model, fitSt and

laSt terms, respectively would be: b
1
b
2
r
12
-8

1 2
S- and b

9
b
10

r
9 1°

S
9S 10 .

We can now express the full covariance matrix in Summation

notation as:

cov(Y,Y) =

Equivalentl,

Thus,

cov(Y,Y

cov(Y,Y)

P -9-2
E

j=1 3 3

p p-1
2E Ebbj rS-S.

1=1

b r SS +br SS =...+ b,r ,S S.
1 yl y 1 2 y2 y 2 3 Y3 Y 3

p
E b,1 r

Y3
.S

Y
S.
3j=1

i=

P P-1
E E b.b,r..S.S, = E b,r ,S S-

j=2i=1 1 3 13 1 3 3L-1 1 Y3 Y

The latter equation is very important in the final steps.

If the variance terms of the multiple R are examined, we see that

;!var(Y) is simply Sy by definition. The term, var (Y) can be manioulated

by covariance and variance rules to produce the folloWing (See Table 4):



var(Y) var
2

x +...+ b,x,+...+ b-x-)

JJ P

35.

In summation notation:

var(Y)

2 2 2
...+ b, S,

2

+...+ b S

J J P P

+ 2b S

4r 14

P
2

b;

J

S;

J

P P=.1

+ 2E Ebb,rS,S,

j.2 i=1
i j 13 1 j

+...+ 2b,b,r S,+...+ 2b -b r- S -S

1JJIJ PP-1 PfP-PP-1

THEREFORE, AFTER MUCH LABOR, WE CAN STATE THE MULTIPLE CORRELATION

,

44

.x x x,,...,x,i...,x .

P 2.2

E 11,S;

J 3

P P
-1

-E Ebbr ,S,S,

+ 21.2 i=1 1 J il 1 J

1 P

_i=1

p 2 2 17F-T7T7"-

Y

E b.S

j=1 j i

+ 2 E E b;b,r,S,S,

j.2 i.1 1 j iJ 1 J

2-

E b.S:
2

j.i

p p-1

2E Ebb,r_S,S,

j =2i =l
i 1 1.3 j

P

\I'

JE '

b,r

YJ

,S

Y

S.

J

END OF PROOF FOR p PREDICTORS
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Appendix A

Normal Equations in Regression AnalySiS

Introduction

In this appendix, we outline a set of procedures to apply in

regression analysis for finding normal equations. The procedures

are appropriate when:

a) the regression model is linear, and

b) the measures are in raw score.

If variables are transformed to a nonlinear form prior to

regression analysis procedures, the procedures described in this appendix

would not apply. Examples of nonlinear transformations include

logarithmic, exponential and square root re-expression, or, in

general, whenever the exponents of the variables in the regression model

are not equal to unity. For example,

Y = a + b 1X
1
+ b2x2

This is a nonlinear mathematical model since the exponent of

x2 is not equal to 1.

To derive normal equations for a given regression model re-

quires knowledge of elementary differential calculus which makes

use of partial differentiation.
1
Students who are familiar with

taltulus may read any textbook of mathematical calculus for the

details ( for example, Hoel, Port and Stone, 1971 ).

1For students who need to review this procedure, or who_know
some calculus and want to learn the technique, see Goodman,1977, for
a good introduction.
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TO render a conceptual understanding of normal equations as they are

employed in the least squares procedure, let us take an example of a two

predictor model. The mathematical model applied to a distribution assumed

linear in each predictor is the one given in the text, namely:

Y = a+bx + b x
2

The raw score model includes an error component, and the error

made in prediction of the criterion (Y) with the above model may be

negative, zero or positive. The raw score model is

Y = Y + 6

Solving for e, we obtain:

Y Y = e

This represents the amount of numerical error made on a score-by-score
A

basis when we predict Y with the idealized model, Y. To obtain

an overall indication of the amount of prediction error for the

entire raw score distribution, we might be tempted to define

A
E(Y-Y) = Ee (over all n observations)

The problem with this approach is that the resulting sum on the left
"

side turns out to be exactly zerol; E(Y-Y) = Ee = 0. That is,

positive errors cancel out negative errors leaving zero as the ove:ali

sum; This is obviously problematical because no matter how good or

bad a partitular mathematical model (linear or nonlinear) is for

empiriOal sc ,ore prediction, we would have no way of determining its

utility (using the sensible criterion of minimizing prediction error).

1-
Proof. For two predictors:

2".(Y-a=bixib2y = E(Y-V- IX,-

= E(Y-V) blExi b2Ex2 = 0

The generalization of thiS for p predictors is obvious.

47



For these reasons, the most widely used and accepted procedure

for finding normal equations is based on the least squares criterion;

F.(Y - Y)- X-E(Y-a -b-
2
X
2
)

2

1 I

38.

Ee = minimum

(The summation ranges from 1=1 to i=n o over the entire set of observations

In words; least squares states: find numerical values for a, 13 and b2
2

which will make the prediction error the smallest possible numerical

amount upon subStitution.

The reader is already aware of one least squares

type of result from elementary statistics. A kind 3f least squares

criterion (and procedure) is used in defining the sample variance

of,a diStribution; i.e.,

E(Y-7)2
n-1

The arithmetic Mean, Y, is used in variance formulas (instead

of medians or other numbers ) because the resulting variance is

the smallest possible value when the mean is used rather than any

other number (or combination of numbers) in that given distribution.
1

This is derived through the same calculus procedure used in deriving

normalormal equations, and is based on the same principle: optimization

or minimization.

1
Take an example:

.(Y-2)` (Y-4)
2

(Y-'8)
2

(Y=10)2 (Y-11)2
-Cy.752

4

8

10

11

--

Find_eath squared sum and compare it against . (Y -Y) (The n-1

can be ignored since it is a constant and has no material bearing on

the result).. It will be seen that only

(Y-7)
2

gives the smallest squared deviation sum.

4 8
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Our task in regression analysis is to find numerical

values corresponding to terms in the model to Satisfy the least

squares criterion of minimum error of prediction; The resulting

values, when SUbStituted into the regression eqUatibn, satisfies

the criterion of minimization. In essence, we solve p+1 equations

(p= the number of predictors, and 1 corresponds to the slope intercept

term), or one equation for one term in the model. Each equation is

:hen solved simultaneously to determine computing formulas to

obtain the numerical values for the p+1 terms in the model. Finally,

each predictor (and the slope intercept term) is passed through

the resulting prediction equation to find a unique predicted criterion

for each observation in the data set. The rest is statist cal theory

(see Lindeman, et al. for an excellent discussion of regression theory).

To take the two predictor example once again,

2 2E(Y -a-bx x2) = Ee = minimum.

We are not interested in finding a comnutational formula for

b
1

and b
2.

Our goal is to stop one step short Of

doing that; We are interested in finding the normal equations,.

and simplifying them to substitute into the multiple R.

Plan

We will now set down a plan for finding the normal equations.

A four phaSe plan is used throughout this appendix for finding
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normal equations. This will help structure the presentation.

^
A. State the regression model, Y

B. state the matheffiatical function of the
least squares criterion,

ECY-Y
2

C. derive the normal equations for each of
terms in the model

D. summarize the normal equations

Finding Normal Eouations for the Two Predictor Model

Let us apply the four phase plan firat to the two predictor case.

A. the regression function is
A

Y = a b 1x1 + b2x2

B. the least squares criterion is

E(Y - Y)2 = E(Y - a -b
1 1
x- - b

2
x
2
)2 = Ee2

C. the procedures fOr deriving the normal equations
are

1. For the slope intercept term, a, we need to:

a) drop the exponent 2 and set function equal to 0
b) distribute the summation_ operator
c) apply rules of summation for constants
d) solve in terms of the criterion. variable; Y
e) subStitute descriptive statistics and simplify

Applying each step in a) through e) produces:

a) E(Y -a-bI x
2

- b2x2) = 0

b) \ EY - Ea - b
1
x

1 2
- Zb-x

2
0

c) EY - na - b1E xi = b2E x2 = 0

.

d) EY = na + biE x1 ± b2E x2

e) EY = na + b1(0) + b2(0)

Recall that Ex1
2

=Exi = O. Dividing through by

n gives us the normal equation for aSin simplified form).

a =Y 50
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2. The procedure$for finding the normal equation for b

a) drop the exponent and set function equal to 0.
b) multiply the function by xi

c) diattibUte the X1 term
d) distribute the summation operator
e) apply rules of summation for constants
f) solve in terms of the criterion variable, Y
g) substitute descriptive statistics and simplify

Applying each step in turn produces:

a) 7(Y - a- b ixi

b) E(Y = a = bi*i = b2x2

_2c) E(Yki = Aki - bixi = b2xlx2 )

d) = Eax
1 1

Eb x2
'1 1

= Eb
2
x

I
x
2

)
1

a Z,X
1

+

Exl - b2 Exix2

:xi + b2 Exix2

are:

--10 since EYxi = (n-OryiSySi and

Exi = (n-1)S
1

2
and Exix = (n- 1)r12SiS2 ,

we can substitute these quantities, and obtain:

(n-Or S S = 0 + b (n-1)S2 + _(n-1)r12

(recall that Ex =,..0).
1

If we divide the last equation by n-1), we obtin:

r
Y1

-S
Y
S- = + r

2 12

This is the normal equation in simplified form
we used in the derivation (see Table 2;.
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3. The steps for finding the normal equation for b2

parallel those for 1)1:

a) drop the exponent 2 and set function equal to 0

b) multiply the funttiOn by x2

c) diStribUte the x
2

term

d) distribute the summation operator

e) apply rules of summation for constants

f) solve in terms of the criterion variable, Y

g) substitute descriptive statistics and simplify

Applying each step in order:

a) E(Y -a b-1 x-
1
- b2x2) =

b) E(Y =d = bixi = b2X2)X2

2 s
c)

E(Yx2 ax2 bixIx2 u2x2 i

d) EY-x 2 - FA)-,2 EbiX1 -Eb2x;

i 2
e) EYX2 aEx

2
x1 x

2
-bE

x2

f) E Yx2 = aEx
2

-
?Klx2 b22x22

since EYx = (n=l)-S-S andr
y2 y 2

Ex
1 2
x- =r12 SS

2
and E4 = (n-1)S1

we can substitute these quantities and obtain:

(n-1)r2S)iS2 = 0 +
bl(1-1)r12S1S2

+ b2.(n-1)S2

If we divide through by (n-1) we have:

r
y2

S
y
S
2

= + b S
2 2

This was the simplified form of the normal equation for

b
2

that was used in the derivation (see Table 2).
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We now recapitulate. As noted, a normal equation is

derived at the point when we solve in terms of the criterion

variable; Y: Subsequent steps are used to simplify.

The normal equations for a, b
I
and b2 were:

For EY = nä b Ex
1 1

2For EYX
1
= aEx1 b,Ex1.

For b
2: EYx-

2
aEx

2

Ex-
2 2

2
Ex

I
x
2

Ex2

When we simplified the normal equations, we obtained the

following set used in the derivation for two predictors.
1

Y

r S S
yl .y I

a

r S S b r
y2 y 2 1 12

b2r1

Readers of the 1982c paper should recognize the remarkable
SiMildrity between raw score and standard score normal
equations.

1

f the above variables were standardized,
each term S, = 0 and a=0 making each normal equation set equal.

IWe actually disregarded the term_ain the derivation because
it was seen to "drop out" when it_ was included in thelalgebra,__
It is included here because -the slope intercept term is included
in the regression equation for criterion score calculation. The formula

used is:

A
Y = Y+ x +bx

1 1 2 2

See Lindeman, et al; for additional methodS of writing this

equation.
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Finding Normal Equations for p Predictors

The rules and method for deriving a set of normal equations

when the number of predictors is greater than two are
- 1

generalizations for the two (or one) predictor case. We will

show two methods for the general case; The first method will

use the four phase plan. The 'second is a short -cut technique; But

the shorter method depends on first showing the longer one.

1What are the normal equations for_the one predictor model?
The reader may_find it instructive to derive the normal equations for
this linear model. This can be done using the above procedures as guidelines.

ANSWER:

r S S
yl y 1 1

The "multiple" R_in this case is the simple Pearson product correlation,
This is obtained from the second equation.r which is equal to S

yl b 1

S-
Y

Thus, the regression (predictiol equation upon substitution is:

Y = a + b x
1 1

S-

V 4- ry, Y xl



Applying the four phase plan gives the following results for the general case.

A. The regression model is:

A

( hk- b k +...+ 1),X, h_x_
1 P P

B. The function to be minimized accoring to the least squares criterion i§:

:,;(Y a 1)-

1 1

b,x, x )

J P P

C. The procedures for fihding the normal equations for a and any term are as follows:

In deriving the normal equation for a, regardless of the number of predictors,

the result is always the same-- a = I

2. Finding the normal equation for any b: term can he done in seven steps:

a) drop the exponent 2,and set the funetiOn equal to 0

b) multiply the functiOn by x

c) distribute the x, term

d) distribute the summation operator

e) Hpply rules of summation for constants

) solve L terms of the criterion variable, Y

,) sunrit c descriptive statistics and simplify



Applying these steps in turn produces:

a) a h1
I 2 2--bj j -bpxp)

h) E(Y - a b-x_ b x = 0
1 I 22 ) pp

c) ax = b x x.- b x x -b x,x
j 11j 22j j) ...p) p

2
Eb-X X- -...- Eb,x, = 0

1 I j 22j J J P ) P

e) ZYx. aTx- b Ex x b Ex?

1

1 3 b Ex,x- = 0
P J P

f) ZYx, = 8Ex, + b-Ex-x- + b ,x-x, +...+
j Ilj 2 j 3 P P

g) 01-1 r
J

S S
j

= 0 + b(n-l)r1) .S-S, t b2 (n-1)r
1 )

Dividing thrbUgh by n-1)

r .S S: = b r
yi y.3 1 13

46.

_2
bAn -1)S, +...+ (n -1)r, S,S

) ) J J JpJp

b-r- S-S- +;..+b,S, +...+ b r S.S
22121 13 V JP I P

Thus, the normal equations for any number of predictors in the regression model

consist of 8=Y and p normal equations of the general form defined above.
yJyJ

56



47.

Alternate -Proce-dure

The above normal equation for any b, term r ,S S. is a general result. NoW a

Yj Y

much simpler procedure which makes use of this fatt Will be presented.

Recall that the simple correlation of any variable with itself is equal to 1. That is;

r--=r -=,;=r, =;;;=r = 1. Also recall that the covariance of any variable With itself
II 22 jj PP

2is eIual to the variance of that variable; that is COV(X X ) = S2 COV(X ,X
2

) .= S
2

l' 1 1

or, in general cdv

we cnn Write

. Another way to denote

2 2

coli(x,Oc.)=S.or S. F.

J J Jj j

Cov(x -ik ) is S11
;

in general

From these facts; it is possible to write down an entire set of normal equations for any nutter

of predictors. If r kids for any b, term, the it holds for j=1, j=2, j=3,..,,
YJ v J

j=p. For example assume j=2 predictors. We know that the set of normal equations will consist

9

ofixi= 2x2=2' 4 terms, Thuil firSt write out the general result forr,S 5, twice as follows:

Yl Y 3

r ,S S. = br SS ,S S
yj y j 1 j 2 ij 2 j

r S, = b

1 j

r

ljYJ Y J

b-r
22j

Now; substitute the appropriate j value: j=1 for line 1; and j..=2 for line 2i



r S S
_

b
1

r

11
S
11

+ r S

Y1 Y I

S
1

...

r- S -S . b r S S + b r
y2 y 2 1 2 2 2 2 22

r_ S S
yl y 1

r S S
yl y 1

+ b
2
r
21

S
2
S

1

OR
r
y
S=b1

12
S1 S2 +1,S2

Y 2

OR

r
y2

S
y
S
2

br
12
SS +

2 2

br- SS
2 12 2

The last set shows the subscripts of the correlations between predictors and criterion; and

the predictor standard deviations written so that the first Subscript is less than the second

subscript. As mentioned in the text, this c,:/vention makes it easier to read the matrix ( and

see the symmetry of off diagonal terms).

Example for FiveTTedictors

To exem Jify the procedures for p predictors we will work thrOUgh the solution of normal

equations for five predictors. We will show the solution by the shortcut method.

The long method could be used by applying the steps listed above for any 15, term; but s'ice



the shorter method gives identical results, we will not work through the longer method.

We begin by writing out the 52 = 25 terms for the general r_ ,S S. normal ecivation. nit i.§,
YJ Y J

write out r S S. on five separate line.
YJ Y J

r br,SS, + b, SS + br,SS + br SS. + r

YJ Y 1 I j 1 j 2j 2 j 3 33 3 4 4j 4 j 5 J 33

r SS brS S brSS + biSS3 + b tSS + br3)j3

r S S = b r , S S +brSS
Y I lj 1 j 223 2 j

+ b3rS
3j3

+ + b rSS

r S S b r + b S S + b -r

Yi Y 1 1j 1 j 2 2] 2 j 3 3j
+ b4r S S + b r S S4i4i:

r S S z bl
jrI

,SS, + b2r + brS +br SS, +br-,S-S,
Y 33j3j 4 4j j 5 5j 5 3

Substitute the ,appropri ate j value (j=1 for line 1, j=2 for line 2, etc.); set ri
=1 r22=2)

etc;

2
and Set S

'

=S S
22

= S. etc.

t .S S.
yl y 1

+ br
21
SS

1

+
2 2

b S + br SS + b- r-

3 31 3 1 41 1 5 51 5 1

r
y2

S
y
S2 b

1

r
12

S
1

S
2

+ b
2
S2 + b3r32S3S2 + b4r42S4 + b5r52S5S2

rY.

3

S S
3

biri3SrS3 T b2r23yj + b3S 23 + b4 r
4
S S +

r
y4

S
y
S4, = b1 r SS

4
+ br SS + b-r

Y 4

SS + bS-
24 2 4 3 4 4 4

+ S S
5 54 5

9

r S S b r -S

Y Y 5 1 15

1,
b2 r

25
S2 S

5
+ b3 r,

'5 b4r45S4S5
4.

"5"05

60



If one desires, the subscripts may be reversed for variables in the Upper right hand

triangle to render the first less than the second. The result is the same set of

normal equations that would be obtained if the longer method were used to derive the

h(tMal equations.

1

The auLhor would be pleased to receive comment and reactions by readers of this paper

and others that appear in this series. My intention is to prepare a textbook of

proofs and derivations for social science_ students. I have long felt the

need to bridge the gap between the standard applied statistics (and psychometrics) textbooks

currently on the market and mathematical_statistics. The mathematical sophistication

of students entering college and_univer§ity is rising steadily, and a textbook such I am

contemplating would make a contribution,_I feel. While it is true that a "real"

understanding of statistical (and probability) theory requires substantial mathematical

coursework, it is nonetheless true that more in the way of explanation and justification

of results in probability and statistics is possible. It is my belief that a textbook

showing detailed presentations of proofs/derivations would be a welcome addition to the market.

I would like to hear from readers (students, professors and others) regarding these

papers. For example, are they clear? Are there proofs that you would like to

see (statistics or psychometrics) in this format? Please remember, at this time I

am limiting my selections to those which can be presented with algebra.

I welcome comments on any level from readers of these papers. My mailing address is:

Franci§ J. O'Brien, Jr.

106 Morning§ide Drive, Apartr6nt# 5

New York, New York 10027
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Appendix B

ERRATA for " A derivation of the sample multiple Correlation formula for standard scores" ED 223 429

-Dretiv-atik- far TwoPtedc rs

3; footnote 1

21, first formula

22

27; statement under Plan

27; two lines under previous

erratum

31, line 2

33, 4 sentences 1'rom bottom

A

--Nor Reads--.

Let us review some

concepts; notation

1-

If it is understood that the 111

summations range _from i=1 to

i=h,then We can drop the summation

limit.all together;

cov(Z,y1,B2Z2,B3Z3,.,

PP

corr(Zy,BIZ1,B2z2,B3

B-P Z-P )

D

demonstrate

consisdered

first firSt

Z

J J

,

Correct to

it us review some of the

concepts, math ...

1_

If it is understood that 411-1_4-a

summations range from i=1 to

i=n, then we can drop the summatim

limits 4togthser;

cov(2,B Z B Z ,B Z

B.Z.
2 3 3

JJ PP

j j Corr(yBIZ1 B2Z2

B.Z, B Z )

JJ% PP,

add period, D.

demonstrate

onSidered

first

corrected prose is underlined; but focMuIas are rewritten with applied corrections only,

NOTE: "Page" refers to original numbers in upper right hand corner.
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